设$\angle AOC=\theta $,则$\angle COD=\theta $,根据题意易知$\theta \in (0$,$\frac{π}{2})$,$\because OD=OB$,$\triangle OBD$为等腰三角形,则$\angle ODB=\angle OBD$,
又$\because \angle AOD=\angle ODB+\angle OBD$,
$\therefore \angle COD=\angle ODB=\angle OBD=\theta $,
$\therefore OC$∥$DB$,
$\therefore $则三块场地的面积和为$S=\frac{1}{2}θ+\frac{1}{2}\sin \theta +\frac{1}{2}sin\left(\pi -2\theta \right)=\frac{1}{2}θ+\frac{1}{2}\sin \theta +\frac{1}{2}sin\left(2\theta \right)$,$\theta \in (0$,$\frac{π}{2})$,
则${S'}=\frac{1}{2}+\frac{1}{2}\cos \theta +\cos 2\theta =2\cos ^{2}\theta +\frac{1}{2}\cos \theta -\frac{1}{2}$,$\theta \in (0$,$\frac{π}{2})$,
令${S'}=0$,$\cos \theta =\frac{\sqrt{17}-1}{8}$或$\cos \theta =\frac{-\sqrt{17}-1}{8}($舍)
设$\varphi $为$\cos \theta =\frac{\sqrt{17}-1}{8}$所对应的角,
$\because y=\cos \theta $在$\theta \in (0$,$\frac{π}{2})$上单调递减,
$\therefore \theta \in \left(0,\varphi \right)$时,$S$单调递增.
$\therefore \theta \in (\varphi $,$\frac{π}{2})$时,$S$单调递减.
$\therefore $当$\cos \theta =\frac{\sqrt{17}-1}{8}$时,面积最大.
故答案为:$\frac{\sqrt{17}-1}{8}$.
标签:AOC