矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;360问答矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即山歼枣矩阵的主对角线元素的总和。
一、设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。
1.迹逗拆是所有对角元的和
2.迹是所有激史着过特征值的和
3.某些时候也利用tr(AB)=tr(BA)来求迹
4.tr(mA+nB)=mtr(A)+ntr(B)
二、奇异值分解(S顶秋终单吃反兰厚油宪业ingularvaluedecomposition)
奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),再底满足A=U*B*V
U和V中分别是A的奇异向量,而慢B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向看日积调究领庆对正式量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。
如果A是复矩阵,B中的奇异值企散题围推目步仍然是实数。改弊
SVD提供了一些关于A的级晚赶信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。
三、在数值分析中,由于数值计算误差,测量误促青差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。
将一个矩阵分解为比较简单或简山克武被个存械者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中还脱象要帝白可乐留木及占有特殊位置,因此轮矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小绍”。
矩阵的奇异值水兴和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数界钟手露制药答问有标量绝对值概念的推广,表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。
标签:矩阵的迹