当前位置:知识问问>生活百科>什么地方用高压变频器

什么地方用高压变频器

2023-08-01 10:02:53 编辑:join 浏览量:554

什么地方用高压变频器

风机,水泵。炼钢风机1000KW的就是用的高压变频器高。

高压变频器的特点如下:

① 采用多重化PWM方式控制,输出电压波形接近正弦波。

② 整流电路的多重化,脉冲数多达30或36,功率因数高,输入谐波小。

③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。

④ 直接高压输出,无需输出变压器。

⑤ 极低的dv/dt输出,无需任何形式的滤波器。

⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。

⑦ 功率单元自动旁通电路,能够实现故障不停机功能。

1、引言

随着电气传动技术的发展,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高电压组成方式可分为直接高压型和高低高型;根据有无中间直流环节可以分为交-交变频器和交-直-交变频器;在交直交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。直接高压交-直-交变频器直接输出高压,无需输出变压,效率高,输出频率不受限制,应用较为广泛。评价高压变频器的指标主要有成本、可靠性、对电网的谐波污染、输入功率因数、输出谐波、dvdt、共模电压、系统效率、能否四象限运行等。本文主要从使用高压变频器后对电网的谐波污染、功率因数等方面讨论高压变频器对电网的影响,并从高压变频器的输出谐波、dvdt、共模电压等方面讨论高压变频器对电机的影响。变频器对电网的影响主要取决于变频器整流电路的结构和特性。高压变频器输出对电机的影响主要取决于逆变电路的结构和特性。美国的NEMA标准中对电机谐波发热、dvdt等方面的相应规定,具体规定是在MGI-1993的第30节。

2、高压变频器对电网的谐波污染

近年来,高压变频器的应用越来越广泛,由于高压变频器相对来说容量较大,占整个电网容量的比重较为显著,所以高压变频器对电网的谐波污染问题已经不容忽视。许多场合由于采用了输入谐波电流较高的变频器,产生了严重的谐波污染问题。从本质上而言,任何高压变频器或多或少会产生输入谐波电流,只是程度不同而已。解决谐波污染的办法有二种 一是采取谐波滤波器,对高压变频器产生的谐波进行治理,以达到供电部门的要求,也即通常所说的“先污染,后治理”的办法; 二是采用产生谐波电流小的变频器,变频器本身基本上不对电网造成谐波污染,即所谓的“绿色”电力电子产品,从本质上解决谐波污染问题。国际上对电网谐波污染控制的标准中,应用较为普遍的是IEEE519-1992,我国也有相应的谐波控制标准。

图1示出了一种常见的6脉冲晶闸管整流电路结构,主要用于各种电流源型变频器。这种整流电路结构简单,但是输入电流中含有很高的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(图2)。由于晶闸管的快速换相会产生一定的高次谐波,可达35次以上,高次谐波会对通信线路产生一定的干扰。这种整流电路总的谐波电流失真约为30%,由于输入谐波较高,一般要设置输入谐波滤波器,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。但此方案较为经济,一般适用于变频器占电网负荷较小比例下安装。

图1 6脉冲晶闸管整流电路

图2 晶闸管整流电路的输入谐波电流

12脉冲晶闸管整流电路,整流器由两组晶闸管整流桥串联而成, 分别由输入变压器的两组副边(星型和三角形,互差30°电角度)供电。这种整流电路的优点是把整流电路的脉冲数由6脉冲提高到12脉冲, 带来的好处是大大降低了5次和7次谐波电流。因为对晶闸管整流电路而言, 谐波电流近似为基波电流的1h倍, h为谐波次数,h=n×p±1, 其中n是自然数, p为脉冲数。12脉冲整流结构总谐波电流失真约为10%左右(图2)。虽然12脉冲整流电路的谐波电流比6脉冲结构大大下降, 但也不能达到IEEE519-1992标准规定的在电网短路电流小于20倍负载电流时谐波电流失真小于5%的要求。因此, 一般也要安装谐波滤波装置。采用12脉冲结构还能避免器件的直接串联,变压器也可承受变频器产生的共模电压中的绝大部分, 使电机绝缘不受共模电压的影响。当然, 变压器也要设计成为能够承受原边和副边的谐波电流。

图3显示了18脉冲晶闸管整流电路结构,电路由三组晶闸管整流串联而成,变压器三组副边均为三角形,互差20°电角度。这个整流电路具有12脉冲结构的优点,但其总谐波电流失真小于5.6%,总谐波电压失真小于2%,基本符合IEEE519-1992标准规定,无需安装谐波滤波装置。

图3 18脉冲晶闸管整流电路3 高压变频器的输入功率因数

晶闸管直流整流电路和二极管整流电路除了6脉冲结构和12脉冲结构外,还可以采取更高脉冲数的结构,如18脉冲,24脉冲,输入谐波也会随着降低,但会导致系统结构复杂,成本增加。

目前,大多数PWM电压源型变频器都采用二极管整流电路,如果整流电路采取全控型电力电子器件的PWM(高压时一般采用三电平PWM结构)控制,其结构与逆变部分基本对称,则可以做到输入电流基本为正弦波,谐波成分很低,功率因数可调,且能量可双向流动。当然系统的复杂和成本也大大增加了。这种双PWM结构的三电平高压变频器预计在轧机,卷扬机等要求四象限运行和较高动态性能的场合,会取代传统的交交变频器。

在晶闸管电流源型整流电路中,中间直流环节的电压正比于电机线电压额定值乘以运行点电机实际的功率因数,再乘以转速百分比。所以,对于风机水泵等平方转矩负载,直流环节电压会随着转速的下降而很快降低,所以输入整流电路必须将触发角后移,这样导致输入功率因数很快下降。另一个解释是,由于整流器电流和逆变器电流一般相等,负载所需的无功电流会直接“反射”到电网,导致输入功率因数较低。我们也可以从能量转换角度来分析这个问题。

根据变频器输入,输出功率关系,有

UinIincosjinh =UoutIoutcosjout

对电流源型变频器有Iin=Iout,所以

cosjin=(UoutUinh)cosjout=(ffnomh)cosjout

式中,Uin—变频器输入电压;

Uout—变频器输出电压;

Iin—变频器输入电流;

Iout—变频器输出电流;

cos jin—变频器输入功率因数;

cos jout—变频器输出功率因数;

f—变频器输出频率;

fnom—变频器输入频率,即电源频率;

h—变频器效率。

可见普通电流源型变频器的输入功率因数较低,且会随着转速的下降而降低,为了解决输入功率因数较低的问题,往往需要功率因数补偿装置,同时也起到消除部分谐波电流的作用。功率因数补偿装置既增加成本和体积,又降低了系统的效率和可靠性。在使用电流源型变频器的场合,由于存在谐波,在一定的参数配合下,功率因数补偿电路可能产生并联谐振现象,危及电容器本身和附近电气设备的安全,因此,并联电容组的设计中必须考虑谐波放大问题。为了抑制谐波放大,通常可采服避开谐振点的方法,即无论是集中补偿和分散就地补偿的电容器组均要串联适当的电抗器。

二极管整流电路在整个运行范围内都有较高的功率因数,基波功率因数一般可保持在0.95以上(这是指位移因数,实际功率因数由于谐波的存在,还必须再乘以基波因数,会有所下降),一般也不必设置功率因数补偿装置。因为有滤波电容存在,负载所需的无功电流可以通过逆变器由滤波电容提供,所以一般不会反映到整流器输入侧。由于输入功率因数较高,输入变压器和整流器只需处理有功电流,有利于提高系统的效率。

采用全控型电力电子器件的PWM型整流电路,其功率因数可调,可以做到接近于1,根据要求,也可做成超前的功率因数,对电网起到部分无功补偿的作用。单元串联多电平PWM变频器功率因数较高,在整个调速范围内可达到0.95以上。属于“绿色”电力电子产品,但由于其成本相对较高,主要用轧机、卷扬机等要求四象限运行和动态性能较高的场合。

4、输出谐波对电机的影响

输出谐波对电机的影响主要有引起电机附加发热,导致电机的额外温升,电机往往要降额使用;由于输出波形失真,增加电机的重复峰值电压,影响电机绝缘,谐波还会引起电机转矩脉动,噪音增加。

电流源型变频器种类很多,主要有串联二极管式、输出滤波器换相式、负载换相式(LCI)和GTO-PWM式等。图4为典型的电流源型变频器示意图。普通的电流源型变频器输出电流波形和输入电流波形极为相似,都是120°的方波,含有丰富的谐波成分,总谐波电流失真可达到30%左右。为了降低输出谐波,也有采用输出12脉冲方案或设置输出滤波器,输出谐波会有较大改善,但系统的成本和复杂性也会大大增加。输出滤波器换相式电流源型变频器固有的滤波器可以给6脉冲输出电流中的谐波分量提供通路,所以速度较高时,电机电流波形有所改善。GTO-PWM电流源型变频器电机电流质量的提高主要是通过GTO采用谐波消除的电流PWM开关模式来实现,但受到GTO开关频率上限的限制。

图4 电流源型变频器

在PWM电压源型变频器中,当输出电压较高时,通常采取三电平PWM方式,也称NPC(Netural Point Clamped中点箝位)方式,整流电路一般采用二极管,逆变部分功率器件采用GTO,IGBT或IGCT。与普通的二电平PWM变频器相比,由于输出相电压电平数增加到3个,每个电平幅值相对下降,且提高了输出电压谐波消除算法的自由度,可使输出波形质量比二电平PWM变频器有较大的提高。为了减少输出谐波,希望有较高的开关频率,但这样会导致变频器损耗增加,效率下降,开关频率一般不超过2kHz。如果不加输出滤波器,三电平变频器输出电流总谐波失真可以达到17%左右,不能使用普通的异步电机。

普通电流源型变频器的输出电流不是正弦波,而是120°的方波,因而三相合成磁动势不是恒速旋转的,而是步进磁动势,它和基本恒速旋转的转子磁动势产生的电磁转矩除了平均转矩以外,还有脉动的分量。转矩脉动的平均值为0,但它会使转子的转速不均匀,产生脉动,在电机低速时,还会发生步进现象,在适当的条件下,可能引起电机与负载组成的机械系统的共振。脉动转矩主要是由基波旋转磁通和转子谐波电流相互作用产生的。在三相电机中,产生脉动转矩的主要是6n±1次谐波。6脉冲输出电流源型变频器输出电流中含有丰富的5次和7次谐波,5次谐波产生的旋转磁势与基波旋转磁反向,7次谐波产生的旋转磁势与基波旋转磁势同向,而电机转子的电气旋转速度基本接近基波磁势的旋转速度(二者的判别对应于电机的转差率),所以5次谐波磁势和7次谐波磁势都会在电机转子中感应产生6倍于基波频率的转子谐波电流。基波旋转磁势和6倍频的转子谐波电流共同作用,产生6倍频的脉动转矩,所以6脉冲输出电流源型变频器含有较大的6倍频脉动转矩。同样,11次和13次谐波电流也会产生一个12倍频的脉动转矩。

电流源型变频器采用12脉冲多重化后,输出电流波形更接近正弦波,由于5次和7次谐波大大降低,6倍频率脉动转矩大大减小,剩下主要为12倍频的脉动转矩,总的转矩脉动明显降低。

5、输出dvdt对电机的影响

普通的二电平和三电平PWM电压源型变频器由于输出电压跳变台阶较大,相电压的跳变分别达到直流母线电压和直流母线电压的一半,同时由于逆变器功率器件开关速度较快,会产生较大的电压变化率,即dvdt。较大的dvdt会影响电机的绝缘,尤其当变频器输出与电机之间电缆距离较长时,由于线路分布电感和分布电容的存在,会产生行波反射作用,dvdt会放大,在电机端子处可增加一倍以上,对电机绝缘引起损坏。所以这种变频器一般需要特殊设计的电机,电机绝缘必须加强。如果要使用普通电机,必须附加输出滤波器。

6、电机设计和输出电缆选择方面的特殊问题

由于变频器输出谐波会引起电机附加温升,电机容量必须适当放大,热参数降低使用。谐波使电机振动,噪声增加,电机应采取低噪声设计并避免可能产生的振动,临界转速必须避开整个工作转速范围。转矩脉动产生的应力集中可能对电机部件引起损坏,电机关键部位必须加强。定、转子槽形应不同于标准电机,以减少谐波引起的铜耗。采取绝缘轴承,在必要时轴上安装接地碳刷以避免轴电流对轴承的损坏。由于普通变频器输出波形中含有高次谐波成分,因集肤效应而使线路等效电阻增加,同时,在逆变器输出低频时,输出电压跟着降低,线路压降占输出电压的比例增加,因此输出电缆的截面积应当比普通接线时放大一级。

7、结束语

晶闸管整流的电流源型变频器(包括6脉冲结构和12脉冲结构)有较大的输入谐波电流,一般要设置输入谐波滤波器以满足有关部门对电网谐波失真的要求,或者采取更高输入脉冲数的结构。其输入功率因数较低,且会随着转速的下降而降低,一般都要设置功率因数补偿装置。二极管整流的电压源型变频器在6脉冲输入结构时,输入谐波电流较大,需要采取滤波措施,12脉冲结构时,谐波电流失真接近标准要求,在要求不是很高等场合可以直接使用。其输入功率因数较高,一般不必采取功率因数补偿措施。采用全控型电力电子器件的PWM型整流电路,输入谐波很低,功率因数可调,不必采取谐波滤波器和功率因数补偿装置,属于“绿色”电力电子产品,但由于其成本相对较高,主要用轧机、卷扬机等要求四象限运行和动态性能较高的场合。

电流源型变频器由于存在输出谐波和共模电压对电机的影响等问题,电机需降额使用和加强绝缘,使其应用受到极大的限制。三电平电压源型变频器存在输出谐波的dvdt等问题,一般要设置输出滤波器,否则必须使用专用电机。一般使用于风机和水泵等不要求四象限运行的设备。

如高压电机负载变化频繁,可采用变频调整以满足工艺或节能需求,也就是所谓的高压变频,例如火电场的风机系统。

火电站,水电站

( )电站

标签:变频器

版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/life/239315.html
热门文章