$ \left(1\right)$直线$y=\dfrac{1}{2}x+2$中,令$x=0$,则$y=2$;令$y=0$,则$x=-4$;
$\therefore A\left(-4,0\right)$,$C\left(0,2\right)$;
$\because C$为$AP$的中点,
$\therefore P\left(4,4\right)$,
$\because $点$P$是反比例函数$y=\dfrac{m}{x}\left(x \gt 0\right)$的图象上的点,
$\therefore m=4\times 4=16$;
$\therefore $反比例函数的表达式为$y=\dfrac{16}{x}$;
(2)假设存在这样的$D$点,使四边形$BCPD$为菱形,如图所示,连接$DC$与$PB$交于$E$,
$\because $四边形$BCPD$为菱形,
$\therefore PB\bot CD$,
$\because C$为$AP$的中点,
$\therefore CE=\dfrac{1}{2}AB=4$
$\therefore CE=DE=4$,
$\therefore CD=8$,
将$x=8$代入反比例函数$y=\dfrac{16}{x}$得$y=2$,
$\therefore D$点的坐标为$\left(8,2\right)$
$\therefore $则反比例函数图象上存在点$D$,使四边形$BCPD$为菱形,此时$D$坐标为$\left(8,2\right)$.
标签:轴于