用线面垂直证明 已知:如图,PO在α上的射影OA垂直于a 求证:OP⊥a 证明:过P做PA垂直于α ∵PA⊥α ∴PA⊥a 又a⊥OA OA∩PA=A ∴a⊥平面POA ∴a⊥OP 用向量证明三垂线定理
1.已知:PO,PA分别是平面α的垂线,斜线,OA是PA在α内的射影,b包含于α,且b垂直于OA,求证:b垂直于PA 证明:∵PO垂直于α,∴PO垂直于b,又∵OA垂直b,向量PA=(向量PO+向量OA) ∴向量PA×b=(向量PO+向量OA)×b=(向量PO×b)+(向量OA×b )=O,∴PA⊥b。
2.已知三个平面OAB,OBC,OAC相交于一点O,∠AOB=∠BOC=∠COA=60度,求交线OA与平面OBC所成的角。 解:∵向量OA=(向量OB+向量AB),O是内心,又∵AB=BC=CA,∴OA与平面OBC所成的角是30°。
标签:垂线
版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/life/157582.html