当前位置:知识问问>百科知识>arccosx的导数是什么?怎么求?

arccosx的导数是什么?怎么求?

2023-04-11 09:06:26 编辑:join 浏览量:669

arccosx的导数是什么?怎么求?

arccosx的导数是:-1/√(1-x²)。

解答过程如下:

(1)y=arccosx则cosy=x。

(2)两边求导:-siny·y'=1,y'=-1/siny。

(3)由于cosy=x,所以siny=√(1-x²)=√(1-x²),所以y'=-1/√(1-x²)。

扩展资料:

在推导的过程中有这几个常见的公州册式需要用到:

⒈(链凯仔式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)。

2. y=u*v,y'=u'v+uv'(一般的leibniz公式)。

常用导数公式:

1.y=c(c为常数册孙宏) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna,y=e^x y'=e^x

4.y=logax y'=logae/x,y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

标签:arccosx

版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/article/51253.html
热门文章