具体步骤如下:
(cosx)^4
=cos⁴x
=(cos²x)²
=[(1+cos2x)/2]²
=(1/4)(1+2cos2x+cos²2x)
=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)
=(3/8)+(1/2)cos2x+(1/8)cos4x∫daocos⁴xdx
=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx
=(3/8)x+(1/4)sin2x+(1/32)sin4x+C
扩展资料:
不定积分的4种积分方法:
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。对于复杂式子可以将其分为两个部分,对复杂部分求导,结果与简单部分比较。
2、换元法:包括整体换元,部分换元。还可分三角函数换元,指数换元,对数换元,倒数换元等等。须灵活运用。注意:dx须求导。
3、分部积分法:利用两个相乘函物巧数的微分公式,将所要求誉渣的积分转化为另外较罩虚键为简单的函数的积分。
标签:不定积分
版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/article/44036.html