当前位置:知识问问>百科知识>n阶方阵a可逆的充分必要条件是

n阶方阵a可逆的充分必要条件是

2024-10-06 09:49:25 编辑:join 浏览量:565

n阶方阵a可逆的充分必要条件是

相关推荐

一个n阶方阵A可逆的充分必要条件是:

|A|≠0 等价于 A是非奇异方阵 等价于 A是满秩矩阵;

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

扩展资料

满秩矩阵

设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。

若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。

单位阵是单位矩阵的简称,它指的是对角线上都是1,其余元素皆为0的矩阵。

在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。

可用将系数矩阵转化成单位矩阵的方法解线性方程组。

标签:方阵

版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/article/409430.html
热门文章