判别式即判定方程实根个数及分布情况的公式。
根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“Δ”表示(读做“delta”)。
一元二次方程判别式的行提阿请应用
(1)解方程,判别一元二次方程根的情况.
它有两种不同果层次的类型:
①系数都为数字;
②系数中含有字母;
③系数中的字母人为地给出了一定的条件.
(2)根据一元二次方程根的情况,确定方程中字母的取值范围或字母间关系.
(3)应用判别式证明方程根的情况(有实根、无实根、有两不等实根、有两相等实根)
应用:
①解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
迫着剧显派率⑤判断当字母的值为何值时,二次三项是完全平方式
⑥可以判断抛物线与直线有无公共点
联立方程。
⑦可以判断抛物线与x轴有几个交点。
标签:判别式
版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/article/373772.html