dx/dy=x+y
dx-(x+y)dy=0,(x+y)dy/dx=1
∵M=1,N=-(x+y),∂M/∂y=0,∂N/∂x=-1
[∂M/∂y-∂N/∂x]/M=+1
∴I=e^∫(-1)dy=e^(-y)
d[e^(-y)*(x+y)]=e^(-y)dy
e^(-y)*(x+y)=-e^(-y)+c
∴x+y=-1+c*e^y (c 是积分常数)
x = -1 - y + c*e^y
验证:dx/dy = - 1 + c*e^y
= x + y
∴【解答正确】
标签:dx
版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/article/275420.html