当前位置:知识问问>百科问答>函数的奇偶性性质,详细点!

函数的奇偶性性质,详细点!

2023-04-04 16:10:37 编辑:join 浏览量:641

1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

函数的奇偶性性质,详细点!

3、奇±奇=奇(可能为既奇又偶函数) 偶±偶=偶(可能为既奇又偶函数) 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称).

4、对于F(x)=f[g(x)]:

若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。

若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。

若g(x)是奇函数且f(x)信让埋是奇函数,则F[x]是奇函数。

若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。

5、奇函数与偶函数的定义域必须关于原点对称。

周期函数有以下性质:

1、若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

2、若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

3、若f(x)有最小正周滑蚂期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

4、T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

5、若滑卜T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

6、周期函数f(x)的定义域M必定是双方无界的集合

标签:奇偶性

版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/answer/44085.html
热门文章