当前位置:知识问问>百科问答>圆周率的历史资料

圆周率的历史资料

2023-08-23 04:24:02 编辑:join 浏览量:553

圆周率的历史资料

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。

中国南北朝时期的著名数学家祖冲之(429-500)首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“密率与约率”对数学的研究有重大贡献。

直到15世纪,阿拉伯数学家阿尔·卡西才以“精确到小数点后17位”打破了这一纪录。

代表“圆周率”的字母是第十六个希腊字母的小写。也是希腊语 περιφρεια(表示周边,地域,圆周)的首字母。

1706年英国数学家威廉·琼斯(William Jones, 1675-1749)最先使用“”来表示圆周率。1736年,瑞士数学家欧拉(Leonhard Euler, 1707-1783)也开始用表示圆周率。从此,便成了圆周率的代名词。

扩展资料:

电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁试验场启用了。

五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。

参考资料来源:

圆周率—π

▲什麼是圆周率?

圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。

▲什麼是π?

π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。

▲圆周率的发展史

在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。

亚洲

中国:

魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。

汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。

王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。

印度:

约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。

婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。

欧洲

斐波那契算出圆周率约为3.1418。

韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537

他还是第一个以无限乘积叙述圆周率的人。

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。

华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......

欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。

之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。

π与电脑的关系

在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。

在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。

为什麼要继续计算π

其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?

这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。

▲π的年表

圆周率的发展

年代 求证者 内容

古代 中国周髀算经 周一径三

圆周率 = 3

西方圣经

元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形

的面积

2.圆面积与以直径为长的正方形面积之比为11:14

3. 圆的周长与直径之比小於3 1/7 ,大於

3 10/71

三世纪 刘徽

中国 用割圆术得圆周率=3.1416称为'徽率'

五世纪 祖冲之

中国 1. 3.1415926<圆周率<3.1415927

2. 约率 = 22/7

3. 密率 = 355/113

1596年 鲁道尔夫

荷兰 正确计萛得的35 位数字

1579年 韦达

法国 '韦达公式'以级数无限项乘积表示

1600年 威廉.奥托兰特

英国 用/σ表示圆周率

π是希腊文圆周的第一个字母

σ是希腊文直径的第一个字母

1655年 渥里斯

英国 开创利用无穷级数求的先例

1706年 马淇

英国 '马淇公式'计算出的100 位数字

1706年 琼斯

英国 首先用表示圆周率

1789年 乔治.威加

英国 准确计萛至126 位

1841年 鲁德福特

英国 准确计萛至152 位

1847年 克劳森

英国 准确计萛至248 位

1873年 威廉.谢克斯

英国 准确计萛至527 位

1948年 费格森和雷恩奇

英国 美国 准确计萛至808 位

1949年 赖脱威逊

美国 用计算机将计算到2034位

现代 用电子计算机可将计算到亿位

▲背诵π

历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。

目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”

用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:

山巅一石一壶酒

3.14159

二侣舞扇舞

26535

把酒砌酒扇又搧

8979323

饱死罗.....

846.....

关於π的有趣发现

将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)

爱因斯坦的生日恰好是在π日(3/14/1879)

从π的第523,551,502个小数位开始,是数列123456789。

从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。

在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米得 ,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形 开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或 阿基米得方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确 到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后 7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

1579年法国数学家韦达给出π的第一个解析表达式

此后,无穷乘积式、无穷连分数、无穷级数等各种π 值表达式纷纷出现,π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗 格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首 次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研 究人员用克雷-2型和IBM-VF型巨型电子计算机计算出 π值小数点后4.8亿位数,后又继续算到小数点后10.1 亿位数,创下新的纪录。

除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数 。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。

计算圆周率

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

圆周率的计算方法

古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。

公元前三世纪古希腊数学家阿基米德发现,当正多边形的边数增加时,它的形状就越来越接近圆这一发现,提供了算圆周率的新途径,阿基米德用圆内接正多边形的圆外切正多边形,从两个方向上同时逐步逼近圆圆获得了圆周率的值,介于71分之223和7分之22之间

标签:圆周率

版权声明:文章由 知识问问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshwenwen.com/answer/283611.html
热门文章