对于一个无向图而言,它的一个极大连通子图即为一连通支。比如说,一个图由三部分构成,其中每一部分都是连通的,但三个部分之间互相不连通,那么每一部分即为无向图的一个连通分支。此图的连通分支数为3。
更形象些,你把教学楼附近的几棵树合起来看做是一个无向图,树叶和树枝分叉点为图的结点,树枝为图的边,每一棵树是连通的,但树与树之间没有树枝相连。因而,每棵树都可视为一个连通分支,树的个数为连通分枝数。
扩展资料
离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。
1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。
2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。
3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。
4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。
5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。
标签:连通分支